Introduction to the
Intel® VTune™
Performance Analyzer 6.0

This white paper was written for Intel Corp. The document was “pre-sales” collateral. As
such, its job was to tell the reader what was wonderful about the product and entice the
reader to learn more about it. Therefore, the paper did not contain a lot of technical detail
or instructions about how to use the product.

Introduction to the
Intel® VTune™
Performance Analyzer 6.0
Find hotspots, identify

performance issues, and
tune application performance

Revision 1.0
December 2001

Introduction to the Intel® VTune™ Performance Analyzer

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR
ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including liability for
infringement of any proprietary rights, relating to use of information in this specification. No license,
express or implied, by estoppel or otherwise, to any intellectual property rights is granted herein, except
that a license is hereby granted to copy and reproduce this document for internal use only.

Intel, the Intel logo, VTune, Pentium, Xeon, and Celeron are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002, Intel Corporation. All rights reserved.

Introduction to the Intel® VTune™ Performance Analyzer

Contents

INEEOAUCTION «..ueeeeereeeeeneeieeeereeeeeeneesseseceseressassssssssssssssanaas &

Identifying Performance ISSUES.......cccvvvericriisericisssnriccsssnnsecssssnnressssssssssssssssessssssssessssssssssssssssssans 4
FANAING HOUSPOTS. .. eteetiieiieeiie ettt ettt e te ettt e et e et e et e e esbeeesbeeasseeessaeasseeasseeassaeassaensseessseensseensseenssesnsseennnesnses 5
Analyzing Function Caller/Callee RelationShipscoceveieiiriinininininiiietcteteseteste ettt 7
Monitoring Performance COUNLET ACHIVILYcccueteriirtinieriniereettetet ettt ettt et ettt st ettt ettt e e seenaenbe e enes 8
Suggesting Code MOIICALIONSc..eetiieiiiirierte ettt ettt ettt b e st be et et et e st s bt sbe e bt eaeeasesentennenaean 9

Obtaining the Intel® VTune™ Performance PAN 1211 /) S 10

Introduction to the Intel® VTune™ Performance Analyzer

Introduction

Clock speeds get faster. Improved microarchitectures offer larger caches and more powerful machine-
level instructions. Multiple-processor systems increase available computing resources. However, all these
enhancements may be wasted if software routines make inefficient use of these valuable computing
resources. Execution efficiency is especially important for performance-critical applications, where speed
is paramount.

Software developers strive to write efficient, elegant code. However, even the best computer programmer
cannot always pinpoint the cause of performance problems, and may waste hours or days on
misdiagnoses. The Intel® VTune™ Performance Analyzer can help.

The VTune Performance Analyzer' assists in finding performance bottlenecks by:

e Identifying “hotspots” or bottlenecks within the application

* Analyzing the caller/callee relationships of functions

* Monitoring runtime performance by using hardware and software counters

¢ Identifying opportunities where modifying the code can help generate faster executables.

The intuitive graphical interface used by the VTune Performance Analyzer lets programmers easily
analyze code performance. They can use their knowledge of the application’s algorithms to interpret the
VTune Performance Analyzer results and optimize the code, leading to improved software application
performance.

Identifying Performance Issues

Software performance problems have a number of causes. You must use the right data collection
technique or use a combination of collectors, based on their characteristics, to collect the type of data that
will help address the problem you are trying to isolate. For example, to see if server transactions are
adding to the overhead, you may want to use the counter monitor data collector. However, if you need to
determine which functions are causing the most overhead, you might want to use the call graph feature of
the VTune Performance Analyzer.

Using a combination of the various VTune Performance Analyzer data collection features, you can:
* Use sampling to find hotspots or bottlenecks in your program’s activity.

e Use a call graph to identify the most time-consuming function calls and call sequences within your
code. The call graph also allows you to determine how the various modules running in a complete
application affect the performance of each other.

¢ Determine how your system resources, such as processor time, are being used and determine how
your application is executing with respect to processor events (such as cache misses).

The Tuning Assistant is always available to offer insightful suggestions about why your code might be
inefficient and how you can improve it.

! The Intel VTune Performance Analyzer assumes the software being analyzed is running on an Intel processor, which includes but is not limited
to, Pentium®, Pentium Pro, Pentium II, Pentium Il Xeon™, Celeron®, Pentium Ill, Pentium 11l Xeon, Mobile Intel Pentium Il Processor —M,
Pentium 4, and Intel Xeon. Also, the VTune Performance Analyzer requires Microsoft Internet Explorer* version 5.5 or later.

Introduction to the Intel® VTune™ Performance Analyzer

The VTune Performance Analyzer saves the data it collects and the data collection configuration
information. This makes it easy for you to compare a baseline run against optimized code to see the
performance impact of your code modifications.

Finding Hotspots

A “hotspot” or bottleneck is a section of code in which there is significant activity, where “activity” is
defined as execution time or processor events that affect performance, such as branch mispredictions,
cache misses, or various types of SIMD instructions being retired. Hotspots can be considered
optimization opportunities.

When analyzing application performance, you should concentrate on hotspots. However, a hotspot does
not necessarily indicate a problem; it may simply indicate where the application spends a majority of its
time. Finding the hotspots in your program can be the first step in identifying an important performance
issue or bottleneck. For example:

e Sometimes the hotspot itself can be optimized to yield a significant performance improvement.

e Other times, looking at a hotspot in detail will suggest that a change in algorithm or data structure
might improve the performance of your program.

¢ Finding a hotspot where you do not expect one may expose a bug in your program logic that affects
the application performance.

The VTune Performance Analyzer finds hotspots by using statistical sampling of the execution address.
This approach has several benefits:

e No code changes or instrumentation are required.”
¢ The profiling is system wide, including ring 0.

® The associated low overhead and minimal intrusion (it does not modify binary files) results in a high
level of validity.

By analyzing the sampling results, you can determine how to modify your source code to use processor
time and processor-specific features more efficiently. If your application is multi-threaded, the VTune
Performance Analyzer reports sample breakdowns by thread.

Two types of sampling are possible:

* Time-based sampling (TBS) — collects samples of active instruction addresses at regular intervals
using an OS timer.

e Event-based sampling (EBS) — interrupts the processor after a specified number of processor events
and stores the program counter. For example, you can define hotspots using events such as
mispredicted branches, cache misses, or instructions retired.

In addition to this flexibility, you can also export your data collection results to Excel*, for reporting ease.

Figure 1 shows some sampling output.

% A “standard” release build may not be sufficient, as you do need access to a build that includes symbols.

Introduction to the Intel® VTune™ Performance Analyzer

' ¥ Tenni [6] Berformares dnabyrer &0 - [Sarep ey et [Sampimg Seesiie (P TO-METEBEMDARY - Fr Dec 0F 1% 95:79 2001)]
B e [B geedy Corigus Wndos fieie =l
F5 ool WY e e | (Ao =t E X

B uUW |

55 @3 BEE D S D e S o

I oy ——
| kv

[lr b
ki 1w

m

| o
E
i
B
B
E

e, Pemck

E il

ol bock

ol v

ol _taen

[R

LR

A W e RO RN N (T MM R e
Iil_..]i-'ll.ll'.-!:ﬂ“'_.l. ol v il Tuwai ST

Mrckiw | Minkapais |

Fo bmlp, pamix Fi

Figure 1. Sampling results from the Quick Performance Analysis (QPA) Wizard help pinpoint
hotspots in your code

In Figure 1, the maroon and blue bars representing the def | at e function are fairly long compared to all
the other functions. These long bars indicate that this function had a relatively high number of instructions
retired and took a relatively long time to execute. Figure 1 is drilled down to the “Hotspot” view of
sampling. You can also view sampling at the process, thread, and module levels.

Figure 2 shows how you can use the VTune Performance Analyzer to drill down from process to thread to
module to source code views, narrowing your focus to the exact lines of code that form the hotspot.

Introduction to the Intel® VTune™ Performance Analyzer

I.'lI|.r|||!I|'||I-":-|||'.||r|'|.l|rrrJrll]_lr.'!"|'.H |Saurce T - (L priphend bie. |
B [Be pemety Corigue Wndos pel — ||)
o BE o “J 1= & 1 & & e = T S T
| -
—= SN B 4 8 8 : % 0
ictrma|oava] T [[tzz] 2na | =
Tl ' '
ol -]
54 _||'|l-!.|_.|l-|'h.c|fll = peLL |._|-|ur|.|
Coa LR EEE prey_malch = mabch #UEibr JEZ | KBS
Lo etk leagrs = AIN_EKTCH-L:
52

) Lf (fmmb bsad '= WIL ii prew leagih b D ol Uy BT

& £ N BTl h wif & I P
ar
O 1LTHE EEE Al sl 12iflh = loieEsl _pbeUCR |Rash Kokl L 55
T S T L e P s
O 10 T if |masitch Llengek = lookslssd) sacch lssgek = lodkabisad: 10 i=
o
Eoee IumeeE & lenghl mmich L LE iw Lok ani
i T4E i if |mmitch lengehk == RIN_EATCH dd scratact-mecch stact = TOO FAR| |
201 = i pray e n.| Wl HATCH, mar TEIT B8 garhage
Aoz vyl we will (gEOEs AR oulEesl mmEch anpees
Mri ’
S ITEF T macobi Lergr - 18 FE]
g
i N B o=
Fanciics Tusrecp | Seopling Peaults [FE-ACTOECECRF] - Fei Sec OT 19:22:13 2001
iddramr Zizs Fenctica Tlaxw (Clockzickes (1) [rrcrectiors. Pacizsd (18] Clockcicks pax Instructions Pesi...
----- —————| e J@iEOrsl BALQE --= | ——e—- 101 el 1013
OFCL]In; DR 1s lis JELL | 1) L2}
DeCl&i0l Ol longmet match 1 | LaZA% | 1. 258
Ol L BE OaOFN £2l1 wimscw ELE TE 1k
Qe lPR0| Oe0s10 deflats Smk o i
i i
Fa bmlp, pamix Fi

Figure 2. Drilling down to a hotspot in the source code enables you to see exactly which lines of
code are slowing down performance

When viewing code, you can view source code, the disassembly of your executable, or both.

Analyzing Function Caller/Callee Relationships
The call graph information includes the following:

® Number of calls for each caller and callee

® Time spent in each function or method

e Time each function spends blocked or waiting

e C(ritical paths through the calling hierarchy

* Functions representing the top 7% time spent, where 7 is user-specified.

Historically, gaining this type of information required time-consuming code changes. In contrast, the call
graph collector of the VTune Performance Analyzer generates a graphical representation of the
caller/callee relationships between functions without requiring any source code changes.

Figure 3 shows a sample call graph. Functions are color-coded to show which ones take the most time,
and tooltips show details about the function and call relationships.

Introduction to the Intel® VTune™ Performance Analyzer

g Wl-ame) Frrror e ® Snawaer b0 - [Call Gnaph - | Call Srask A msuls - Tes s 03 TS N | M
(e b g aviy Gmigue i e =izl
H.ﬂﬂ LR e e 1] | | [l e Do HoM e XY |
' |[® |||
| Werhiphleme (0 | Fheesd 10 {Funcaen [} Glnen (0 Cofty (1) Sebi Terw (1) [Vapul Time (1] | Culure {14] | Colupn (1y [=i
ETIE BaE Threes] 530 lec e 2 1 1] LR
ip [TT] el 538 IElI mulch P o R i 188 1 s
[l LT Thawaa_ 530 manCRTHuhp 1 I X Iy 1 B L=l
[N] Thiemd 538 mals_ofsarrs | i 3 1 1€
[T Thivad 538 iy *® i 152 5 1t
BN ERR T b 530 meaTen | 1] 1 1 Dt
Thiwal 538 lima | 2 i] el] 3 1
L kiiand L 435 e ok A : 2
i AE bk 5 8 gL 8 (R]| o e =] %] Panscids | bl il =l
Dl ThHeasd ir,
ackd
AR Totr b Aot
Forwiion : resinCE T arbap B
Mool - irdel VTuormi TP Famae o
Fiokinl Trme: NS00I ren
Sl Vi 4 Py
Fosk . T
Sl Wl P et L
£l 1
-
[
s - arranc Ui thige 24 rucsa , 23 sk (57 A | B s, G st D peari: =
| S | Ealini]
b i, DeEiEl T 5l

Figure 3. The call graph view enables you to clearly see what functions call others, and which ones
use the most time

In many cases, a function may be called from several different places. The call graph collector can
provide call information per site.

Monitoring Performance Counter Activity

Sometimes understanding an application’s performance requires a higher-level perspective. The VTune
Performance Analyzer can monitor hardware and software counters’. This feature enables you to track
system activity during runtime, which helps you understand the cause-and-effect relationship between the
computer’s subsystems and your application. This perspective on performance can indicate when an
application may be exhibiting anomalous behavior and allows you to focus only on those times when the
behavior is occurring.

By default, the Quick Performance Analyzer (QPA) Wizard monitors the following set of counters:
e Redirector: Writes Denied/sec

e Redirector: Reads Denied/sec

e Redirector: Current Commands

e Redirector: Bytes Total/sec

* If you develop application-specific counters using Performance DLLs, the VTune Performance Analyzer will also collect and display these
counters.

Introduction to the Intel® VTune™ Performance Analyzer

e Redirector: Network Errors/sec

® Memory: Pages/sec

® Memory: Available Bytes

e System: Processor Queue Length

* System: Context Switches/sec

® Processor (_Total): % Privileged Time
® Processor (_Total): % Processor Time

The VTune Performance Analyzer’s extensive context-sensitive help system explains what each counter
measures.

Figure 4 shows a sample counter monitor view.

& Ve TW| Pedaimams Analyte 6.0 - [Downieo Masfer Resuls - san Dec 10 09:00,05 7001

Eire [Ber gy Qeiges Wedos e - 7] K|

= & -ﬁ [* .J I= 5 5] & B [iyl It ol veim | - 1?'1"\;. = E NI X B
L &
REarHOE LD R E- UE S S
e Mnior L opgeed e e WO ETOBEDE
il
[f]
L =
LB L - =
. = -
- -
m ey, i____'__--""
! m
i MoK
! am
] L
mm GAn
E L] KT TE—— .-
= ==
1] ——
—a— S
I & & a = - B #
1] 1o by) . L] L] = T o) Lo o
Terw Plmecordt

Figure 4. The counter monitor view shows how your application interacts with the system
resources

Suggesting Code Modifications

The VTune Performance Analyzer comes with a Tuning Assistant, which can examine how your
application interacts with the system and can provide context-sensitive tuning advice that may improve
your code. Figure 5 shows sample Tuning Assistant output.

Introduction to the Intel® VTune™ Performance Analyzer

@ Vlame (0 Ferforman & Snafyaer b0 r <, et i = | M|
Mipe b g Wvds Colger wnkes S =i
= o o AR R R Err—r— =t E X § |
e
e = L —
i dl=2-1 REER %L i 1 e : 3
B Semplera drirely | _r_l T 'ntl'."l
Seamrpirg Hurair
W nu e —— |
2] T
j. Sprgmng Hamlin [- | T
.1 Mandl eHw
1] Tima
- ard et by
Line F&1i: Loop invariant e 1
pililﬂEtElS 7 "_
Flika LR AR | g if ihess o T Iprasedd
Sicm Fare | o
- =
1 FPagm: 1 1
% || [&
General &
TLTATTET T39I LA SR P § TMe ©apdeg iCollecwd o colecing sangla imssd on s N sesan
THRTI B2 O LA R EL. P) 5 erpleeg dais s raccwichdly sallecosd
TETATEE L B HAH S0 EL. P [Tin 5 arapieg Callec o o colacing nenpiea 'wassd on B Tinss sven
TLTELANT T2l JTEREHEH ST EL M [S aspieg deis s tecceshaly colleced

Ei D,]
'I.t-'ll el - I & Lo I ﬂf‘“‘lil.."h‘llurﬂ. = - Ao d{“ﬂﬂ@ﬂﬂ [TE]
Figure 5. The Tuning Assistant offers succinct and specific advice about your code

Obtaining the Intel® VTune™
Performance Analyzer

The Intel VTune Performance Analyzer can help you identify performance issues in software that runs on
Intel processors. Included with the VTune Performance Analyzer is a tutorial that covers basic concepts
and walks you through an example Quick Performance Analysis using the QPA wizard. An extensive
online help system completes the package.

For more information about how to get started using the VTune Performance Analyzer, visit
http://www.developer.intel.com/products/software/vtune. In particular, the Web site offers detailed
information about which operating systems and languages are supported. If you are not yet convinced that
the VTune Performance Analyzer can help you improve your code, take advantage of the 30-day free trial
(see the Web site for more details).

10

http://www.developer.intel.com/products/software/vtune

